Amrine CSM, Raja HA, Darveaux BA, Pearce CJ, Oberlies NH. Media studies to enhance the production of verticillins facilitated by in situ chemical analysis. J Ind Microbiol Biotechnol. 2018;(0123456789). doi:10.1007/s10295-018-2083-8

Chen W, Wang L, Van Berkel GJ, Kertesz V, Gan J. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A. 2016;1439:137-143. doi:10.1016/j.chroma.2015.10.093

Chen X, Hatsis P, Judge J, et al. Compound property optimization in drug discovery using quantitative surface sampling micro liquid chromatography with tandem mass spectrometry. Anal Chem. 2016;88(23):11813-11820. doi:10.1021/acs.analchem.6b03449

Kao D, Henkin JM, Soejarto DD, Kinghorn AD, Oberlies NH. Non-destructive chemical analysis of a Garcinia mangostana L. (Mangosteen) herbarium voucher specimen. Phytochem Lett. 2018;28(September):124-129. doi:10.1016/j.phytol.2018.10.001

Kertesz V, Calligaris D, Feldman DR, et al. Profiling of adrenocorticotropic hormone and arginine vasopressin in human pituitary gland and tumor thin tissue sections using droplet-based liquid-microjunction surface-sampling-HPLC-ESI-MS-MS. Anal Bioanal Chem. 2015;407(20):5989-5998. doi:10.1007/s00216-015-8803-2

Kertesz V, Paranthaman N, Moench P, Catoire A, Flarakos J, Van Berkel GJ. Liquid microjunction surface sampling of acetaminophen, terfenadine and their metabolites in thin tissue sections. Bioanalysis. 2014. doi:10.4155/bio.14.130

Kertesz V, Van Berkel GJ. Automated liquid microjunction surface sampling-HPLC-MS/MS analysis of drugs and metabolites in whole-body thin tissue sections. Bioanalysis. 2013;5(7):819-826. doi:10.4155/bio.13.42

Kertesz V, Van Berkel GJ. Sampling reliability, spatial resolution, spatial precision, and extraction efficiency in droplet-based liquid microjunction surface sampling. Rapid Commun Mass Spectrom. 2014;28(13):1553-1560. doi:10.1002/rcm.6931

Kertesz V, Van Berkel GJ. Liquid microjunction surface sampling coupled with high-pressure liquid chromatography-electrospray ionization-mass spectrometry for analysis of drugs and metabolites in whole-body thin tissue sections. Anal Chem. 2010;82(14):5917-5921. doi:10.1021/ac100954p

Kertesz V, Vavrek M, Freddo C, Van Berkel GJ. Spatial profiling of stapled α-helical peptide ATSP-7041 in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS. Int J Mass Spectrom. 2018:1-6. doi:10.1016/j.ijms.2018.01.005

Kertesz V, Weiskittel TM, Van Berkel GJ. An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis. Anal Bioanal Chem. 2015;407(8):2117-2125. doi:10.1007/s00216-014-8287-5

Kertesz V, Weiskittel TM, Vavrek M, Freddo C, Van Berkel GJ. Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney tissue sections using droplet-based liquid microjunction surface sampling high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(14):1705-1712. doi:10.1002/rcm.7607

Kinghorn AD, De Blanco EJC, Lucas DM, et al. Discovery of Anticancer Agents of Diverse Natural Origin. Anticancer Res. 2016;36(11):5623-5638. doi:10.21873/anticanres.11146

Lanshoeft C, Stutz G, Elbast W, et al. Analysis of small molecule antibody-drug conjugate catabolites in rat liver and tumor tissue by liquid extraction surface analysis micro-capillary liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(7):823-832. doi:10.1002/rcm.7511

Netzker T, Flak M, Krespach MK, et al. Microbial interactions trigger the production of antibiotics. Curr Opin Microbiol. 2018;45:117-123. doi:10.1016/j.mib.2018.04.002

Paguigan ND, El-Elimat T, Kao D, Raja HA, Pearce CJ, Oberlies NH. Enhanced dereplication of fungal cultures via use of mass defect filtering. J Antibiot (Tokyo). 2017;70(5):553-561. doi:10.1038/ja.2016.145

Paguigan ND, Raja HA, Day CS, Oberlies NH. Acetophenone derivatives from a freshwater fungal isolate of recently described Lindgomyces madisonensis (G416). Phytochemistry. 2016;126:59-65. doi:10.1016/j.phytochem.2016.03.007

Rivera-Chávez J, Raja HA, Graf TN, Burdette JE, Pearce CJ, Oberlies NH. Biosynthesis of Fluorinated Peptaibols Using a Site-Directed Building Block Incorporation Approach. J Nat Prod. 2017;80(6):1883-1892. doi:10.1021/acs.jnatprod.7b00189

Sica VP, El-Elimat T, Oberlies NH. In situ analysis of Asimina triloba (paw paw) plant tissues for acetogenins via the droplet-liquid microjunction-surface sampling probe coupled to UHPLC-PDA-HRMS/MS. Anal Methods. 2016;8(32):6143-6149. doi:10.1039/c6ay01583b

Sica VP, Figueroa M, Raja HA, et al. Optimizing production and evaluating biosynthesis in situ of a herbicidal compound, mevalocidin, from Coniolariella sp. J Ind Microbiol Biotechnol. 2016;43(8):1149-1157. doi:10.1007/s10295-016-1782-2

Sica VP, Raja HA, El-Elimat T, et al. Dereplicating and Spatial Mapping of Secondary Metabolites from Fungal Cultures in Situ. J Nat Prod. 2015;78(8):1926-1936. doi:10.1021/acs.jnatprod.5b00268

Sica VP, Rees ER, Raja HA, et al. In situ mass spectrometry monitoring of fungal cultures led to the identification of four peptaibols with a rare threonine residue. Phytochemistry. 2017;143:45-53. doi:10.1016/j.phytochem.2017.07.004

Sica VP, Rees ER, Tchegnon E, Bardsley RH, Raja HA, Oberlies NH. Spatial and temporal profiling of griseofulvin production in Xylaria cubensis using mass spectrometry mapping. Front Microbiol. 2016;7(APR):1-14. doi:10.3389/fmicb.2016.00544